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Abstract
MHD turbulence has numerous applications in

space and astrophysical plasmas. In this paper, the
eddy-damped quasi-normal Markovian (EDQNM)
model is used to perform a preliminary study of
the nonlinear transfer process in three-dimensional
MHD turbulence. Both two- and three-dimensional
contour plots of the triadic transfer functions are
presented for the case of assumed energy spectra cor-
responding to Kolmogorov inertial subrange scaling.

Introduction
The magnetohydrodynamic (MHD) approxima-

tion has been quite successful in space physics and
astrophysics. In particular, the manifestation of
turbulence and other nonlinear phenomena in as-
trophysical plasmas is explainable from an MHD
turbulence perspective. The MHD description has
been shown to be an excellent starting point for de-
scribing plasma motions when the macroscopic level
of motions are well separated from the Coulomb col-
lision/particle gyro-scales.

¤Copyright c° 2001 by the American Institute of Aero-
nautics and Astronautics, Inc. All rights reserved.

The application of MHD turbulence to the so-
lar wind illustrates how the understanding of basic
plasma physics and the universe can be improved.
The existence of the solar wind was deduced in
1896 by Birkeland and later theoretically predicted
by Parker. Subsequent observations con¯rmed the
presence of hot, supersonic out°ows of electrons,
protons, and alpha particles from the upper limits
of the corona of the Sun. The solar wind streams
past the magnetosphere of the Earth, and is the
means by which mechanical energy is transmitted
from the Sun to the Earth. Solar wind space-
craft observations provide a readily available `lab-
oratory' for testing theories and assumptions. For
example, spacecraft observations demonstrated that
the solar wind can be characterized as a turbulent
magneto°uid. Reduced power spectra constructed
from Mariner 10 spacecraft magnetometer data re-
vealed a steady power-law spectrum spanning nearly
three decades in frequency, with an !¡5=3 power-
law, where ! is the spacecraft rest frequency. Re-
lating time measurements to spatial scales using
the Taylor frozen-in-°ow hypothesis, this translates
to a k¡5=3 wavenumber spectrum, reminiscent of
the well-known kinetic energy spectrum in fully-
developed homogeneous, isotropic °uid turbulence.
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Fyfe, Montgomery, and Joyce1 argued that the orig-
inal Kolmogorov scaling, and its associated k¡5=3

power-law, is also applicable to MHD turbulence.
Kraichnan2, however, proposed that the usual phe-
nomenological argument should be modi¯ed to in-
clude magnetic ¯eld e®ects, which leads to a k¡3=2

spectrum. Unquestionably, spacecraft observations
have strongly motivated the study of turbulence in
MHD models describing the dynamics of the solar
wind.
Much MHD turbulence research has focused on

the spectra of three quadratic, integral \rugged'
invariants3;4. These invariants are deduced from the
incompressible, non-dissipative approximation of the
MHD equations in the absence of a mean magnetic
¯eld. In three-dimensional MHD turbulence, these
invariants are the energy (per unit mass), the cross
helicity, and the magnetic helicity. Some interesting
applications of MHD turbulence to the solar wind in-
clude the evolution of cross helicity, the development
of anisotropies, the decay of magnetic helicity with a
mean magnetic ¯eld, and nearly-incompressible dy-
namics.
While signī cant progress has been made, some

fundamental aspects of MHD turbulence must be
investigated and understood regarding the energy
transfer and interacting scales. One can appreciate
this point by noting that nearly all MHD turbu-
lence, including its applications to the solar wind5{7

rely on assumptions regarding the energy transfer
process through the inertial range. Spacecraft ob-
servations may be able to indicate the total energy
at a given scale in the spectrum, and detailed infor-
mation on the energy transfer and interacting scales
can be obtained by an analysis similar to that car-
ried out for °uid turbulence8{10.
In this paper, we will develop the basic concepts

and equations for the energy transfer and inter-
acting scale analysis. After forming the transfer
spectra, we will formulate the principal quantita-
tive measurements for describing the spectral lo-
cality, strength, and anisotropies of the nonlinear
modal couplings. All of these analyses can be car-
ried out with direct numerical simulation (DNS)
databases of MHD turbulence. The main limi-
tation of DNS data is that the °uid and mag-
netic Reynolds numbers are restricted to relatively
moderate values. Here, we present an alternative

method for performing the energy transfer analysis
using transfer spectra constructed from the eddy-
damped quasi-normal Markovian (EDQNM) closure
model4;11. The EDQNM closure can achieve very
high Reynolds numbers, and therefore, a wide range
of spectral scales for the analysis.

The MHD Equations
The standard, unforced MHD equations are the

Navier-Stokes equation

µ
@
@t

¡ ºr2
¶
u = ¡rp + b ¢rb ¡ u ¢ ru (1)

and the magnetic ¯eld equation
µ

@
@t

¡ ³ r2
¶
b = r£ (u£ b) (2)

with

r ¢ u = r ¢ b = 0 ; (3)

where the kinematic viscosity and magnetic di®usiv-
ity are º and ³ , respectively.
For homogeneous turbulence, the MHD equations

in wavenumber space are
µ

@
@t

+ º k2
¶
ui(k; t) (4)

=
X

¢

Mijk(k) [uj (p; t) uk (q; t)¡ bj(p; t) bk(q; t)]

µ
@
@t

+ ³ k2
¶
bi(k; t) (5)

=
X

¢

M B
ijk(k) bj(p; t)uk(q; t) ;

where the symbol ¢ in the sum represents the sum-
mation over wavevectors p and q with the triadic
restriction k = p+ q. Here the symbol ²ijk is the
unit antisymmetric tensor and

Mijk (k) = ¡ i
2
[kk Pij(k) + ki Pik(k)] ; (6)

M B
ijk (k) = i²ilm kl ²mjk ; (7)

where
Pij (k) = ±ij ¡

ki kj
k2

(8)

is the solenoidal pro jection tensor.
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The Transfer Spectra
The kinetic energy spectrum evolution equations

can be constructed from the wavenumber space
MHD equations. For example, the total energy spec-
trum evolution equation

·
@
@t

+ 2 (º + ³) k2
¸
E(k; t) =

X

¢

TE(k;p; q) ; (9)

where the total energy spectrum is

E(k; t) (10)

=
1
2
hui(k; t)ui(k; t)¤ + bi(k; t)bi(k; t)¤ i

and the triadic interaction function of energy is de-
¯ned as

TE(k;p; q) =
¿
Mijk (k)ui(k; t)¤ (11)

£ [uj (p; t) uk (q; t)¡ bj (p; t) bk (q; t)]

+MB
ijk (k) bi(k; t)

¤ bj (p; t) uk (q; t) + c:c:
À
:

Similarly, taking the magnetic Prandtl number

Prm =
º
³

(12)

= 1 ;

the cross helicity spectrum evolution equation is

µ
@
@t

+ 2º k2
¶
HC (k; t) =

X

¢

THc(k;p;q) ; (13)

where the cross helicity spectrum is

HC(k; t) (14)

= hui(k; t) bi(k; t)¤ + ui(k; t)¤ bi(k; t)i
and the triadic interaction function of cross helicity
is

THc(k;p; q) =
¿
Mijk (k) bi(k ; t)¤ (15)

£ [uj (p; t) uk (q; t)¡ bj (p; t) bk (q; t)]

+M B
ijk(k)

¤ ui(k; t) bj (p; t)¤ uk (q; t)¤ + c:c
À
:

EDQNM Closure Equations
The EDQNM equations for the kinetic energy and

helicity spectra, E(k; t) and EH (k; t), and magnetic
energy and helicity spectra, EB (k; t) and EH

B (k; t)
are an excellent means for obtaining the detailed
triadic transfer functions for both total energy and
cross helicity. An illustrative calculation of the ve-
locity triadic transfer spectrum is shown in Fig. 1.
In the full paper, detailed analysis of all transfer
spectra and interacting scales will be presented to
elucidate the fundamental dynamics of MHD turbu-
lence.
In the three-dimensional case, the energy spectra

evolution equations are11:
µ

@
@t

+ 2 º k2
¶
E(k; t) (16)

=
Z Z

¢
µkpq

³
Tvv + Tevev + T vB + TBB + T eB eB´

£dpdq ;
µ

@
@t

+ 2 ³ k2
¶
EB(k; t) (17)

=
Z Z

¢
µkpq

³
T vB
B + TeveBB + T BB

B + T eB eB
B

´

£dpdq ;
µ

@
@t

+ 2º k2
¶
EH (k; t) (18)

=
Z Z

¢
µkpq

³
Tvev
H + TevBH + T B eB

H

´
dp dq ;

µ
@
@t

+ 2 ³ k2
¶
EH

B (k; t) (19)

=
Z Z

¢
µkpq

³
T veB
HB + TevBHB + T B eB

HB

´
dp dq ;

where

T vv(k; p; q; t) =
k
pq

bkpq
£
k2 E(p; t)¡ p2 E(k; t)

¤

(20)
£E(q; t) ;

Tevev(k; p; q; t) = ¡ 1
p q2

ckpq (21)

£
£
k2 EH (p; t)¡ p2 EH (k; t)

¤
EH (q; t) ;
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T vB(k; p; q; t) =
k p
q

ckpq E(k; t) EB(q; t) ; (22)

TBB(k; p; q; t) =
k3

p q
ckpq EB (p; t) EB(q; t) ; (23)

T eB eB(k; p; q; t) = ¡ k3

2 p
hkpq EH

B (p; t) EH
B (q; t) ; (24)

T vB
B (k; p; q; t) =

k5

p3 q
ckpq E(p; t) EB(q; t) (25)

+
k
p q

hkpq
£
k2 EB(p; t)¡ p2 EB(k; t)

¤
E(q; t) ;

TeveBB (k;p; q; t) =
k q
p

hkpq

"
k2

p2
EH (p; t)EH

B (q; t)

(26)

¡p2

q2
EH (q; t)EH

B (k; t)

#
;

T BB
B (k; p; q; t) = ¡ k3

p q
ckpq EB(k; t)EB(q;t) ; (27)

T eB eB
B (k; p; q; t) = k p2 ekpq EH

B (k; t)EH
B (q; t) ; (28)

T vev
H (k; p; q; t) =

k
p q

bkpq
£
k2 EH (p; t)¡ p2 EH (k; t)

¤

(29)
£E(q; t)

¡k2 p
q2

ckpq [E(p; t)¡ E(k; t)]EH (q; t) ;

TevBH (k; p; q; t) = ¡k p
q

ckpq EH (k; t)EB(q; t) ; (30)

T B eB
H (k; p; q; t) =

k4

q
fkpq EH

B (p; t) EB(q; t) ; (31)

T veB
HB(k; p; q; t) =

k
p q

hkpq
£
k2 EH

B (p; t)¡ p2 EH
B (k; t)

¤

(32)
£E(q; t) ;

TevBHB(k; p; q; t) =
k
p q

hkpq

"
k2

p2
EH (p; t) EB(q; t)

(33)

¡p2

k2
EH (q; t)EB(k; t)

#
;

T veB
HB(k; p; q; t) =

k
p q

hkpq
£
k2 EH

B (p; t)¡ p2 EH
B (k; t)

¤

(34)

£E(q; t) ;

TevBHB(k; p; q; t) =
k
p q

hkpq

"
k2

p2
EH (p; t) EB(q; t)

(35)

¡p2

k2
EH (q; t)EB(k; t)

#
;

T B eB
HB (k; p; q; t) =

p2

k
ekpq EB(k; t) EH

B (q; t) (36)

¡k p
q

jkpq EB (q; t)EH
B (k; t) ;

the geometrical coe±cients are

bkpq =
p
k
¡
xy+ z3

¢
; (37)

ckpq =
p
k
z
¡
1 ¡ y2

¢
; (38)

ekpq = x
¡
1¡ z2

¢
; (39)

fkpq = z¡ xy ¡ 2y2z ; (40)

hkpq = 1 ¡ y2 ; (41)

jkpq =
p
k
z
¡
1¡ x2

¢
; (42)

(x, y, and z are the cosines of the interior angles op-
posite the sides formed by k, p, and q, respectively)
and the three-point eddy correlation timescale is

µkpq(t) =
1 ¡ exp [¡¹kpq(t) t]

¹kpq(t)
; (43)

¹kpq(t) = ¹k(t) + ¹p(t) + ¹q(t) (44)

with eddy damping rate

¹k (t) = (º + ³) k2 (45)

+0:177Ko3=2
"Z k

0
p2 [E(p; t) + EB(p; t)] dp

#1=2

+

r
2
3
k

"Z k

0
EB(p; t)dp

#1=2
;

where Ko is the assumed Kolmogorov constant.
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Fig. 1 Three-dimensional contour plot of the
triadic kinetic energy transfer function [the sum
of (20){(24)] obtained from the EDQNM model;
the integers l, m, and n correspond to wavenum-
bers k, p, and q.
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Fig. 2 Three-dimensional contour plot of the tri-
adic magnetic energy transfer function [the sum
of (25){(28)] obtained from the EDQNM model;
the integers l, m, and n correspond to wavenum-
bers k, p, and q.
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Fig. 3 Two-dimensional contour plot of the tri-
adic kinetic energy transfer function [the sum of
(20){(24)] obtained from the EDQNM model for
mode l = 17; the integers m and n correspond to
wavenumbers p and q.
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Fig. 4 Two-dimensional contour plot of the tri-
adic kinetic energy transfer function [the sum of
(20){(24)] obtained from the EDQNM model for
mode l = 20; the integers m and n correspond to
wavenumbers p and q.
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Fig. 5 Two-dimensional contour plot of the tri-
adic magnetic energy transfer function [the sum
of (25){(28)] obtained from the EDQNM model
for mode l = 17; the integers m and n correspond
to the wavenumbers p and q.
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Fig. 6 Two-dimensional contour plot of the tri-
adic magnetic energy transfer function [the sum
of (25){(28)] obtained from the EDQNM model
for mode l = 20; the integers m and n correspond
to the wavenumbers p and q.

Results and Conclusions
The triadic transfer functions (20){(36) were com-

puted for assumed Kolmogorov inertial subrange en-
ergy spectra

E(k) = EH (k) (46)

= Ko ²2=3 k¡5=3

EB (k) = EH
B (k) (47)

= KoB ²2=3B k¡5=3

with Ko = KoB = 1:7 and ² = ²B = 1. The
wavenumber range was k; p; q 2 [1; 53:81], with the
discrete wavenumbers given by

kl = kmin 2(l¡1)=4 (48)

with kmin = 1:0 and l = 1; : : : ;24.
The EDQNM model is a useful tool for provid-

ing insight into the energy transfer processes in
three-dimensional, isotropic MHD turbulence. The
present study considered only the energy transfer,
and a study of the helicity transfers will be under-
taken in the future. Additionally, the subject of
subsequent research will be the study of the locality
of the energy transfer and the dynamics of interact-
ing scales. It is expected that the results of these
studies will have important implications for space
and astrophysical plasmas.
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